
R ooted in the early 1980s – specif-
ically, the Tandy Colour Com-
puter 3 – the OS-9 operating

system is proving to be something of a
comeback kid. With a large installed base,
it continues to gain design wins today. So
why is something that was originally
developed as a platform on which to run
a basic language interpreter more than 20
years ago, continuing to gain followers?

Ric Yeates, senior software architect
on RadiSys’ OS-9 project, attributes OS-
9’s popularity to several factors. Firstly he
suggests: “It was used to support the
Motorola 6809 processor (which fea-
tured in the popular Tandy computer)
and it was a logical progression to con-
vert this run time environment to a full
OS. So that’s where it got its size and per-
formance characteristics.”

Although the 6809 was a 2MHz
processor, OS-9 enabled it to scale to
work with one user or tens of users – as
developer Microware did internally.
Recounts Yeates: “Customers were using
OS-9 in one embedded system out in the
field. However, we were using it in house
to run our development and sales/mar-
keting operations. Unlike previous OS’,
we didn’t have to reboot OS-9 several
times a day.” OS-9 can be scaled from a
completely diskless environment without
I/O, to a full system supporting serial,
disk, internet and more, unlike Unix’
structure, which had provided inspira-
tion for OS-9’s developers.

Its real time, multiuser, multitasking
characteristics are down to the modular
architecture to which OS-9 subscribes,
according to Yeates. New devices can be
added to an OS-9 system simply by writ-
ing device drivers, with I/O devices
treated as files. Applications and drivers
can be dynamically loaded and unloaded
during development or after deployment
without a reboot.

Allen Huffman, a software engineer at
RadiSys, explains the OS-9
structure more fully:
“When OS-9 was
designed in 1980,
the concept was
that code would be
living in rom and
could be mapped anywhere.
The OS-9 module format was
created to allow for position
independent code and to let
components be swapped in or
out. A hardware device might contain
OS-9 drivers in rom, which would then
appear and be available to the system – a
concept that allowed the Philips CD-i
(Compact Disc Interactive) systems to
plug in Mpeg decoders and allow OS-9 (it
was called CD-RTOS) to have Mpeg
drivers for playing VideoCDs.”

As shown in figure 1, OS-9 consists of
a group of modules, organised in a
multilevel approach. The sys-
tem modules comprise: 
• kernel, which contains
the code for process
scheduling, sema-
phors, events and
memory alloca-
tion 
• init, a data
block with kernel
defaults that con-
tains the name of

the initial launch process, memory map,
default table sizes (such as path table,
event table)
• ioman, which can be used to give access
to a Unix like unified I/O system for
files, serial streams and tape devices 
• clock, a software handler for the specific
real time clock hardware.

Other system modules include the
ticker (heartbeat), ssm (mmu manager),
cache, and kernel extensions to handle

You can lean on me …
What relevance does an OS
designed in the 1980s have to
embedded systems today? 
By Vanessa Knivett.

I N T R A  D E S I G NO P E R A T I N G  S Y S T E M S

37New E lec t ron ics www.newelec t ron ics . co .uk 10 October  2006

Ill
us

tra
tio

n:
 E

lly
 W

al
to

n



external hardware like the MMU or IRQ
controllers. 

Underneath the system modules and
ioman are the file managers. The file
manager module consists of a random
block file manager which takes raw sec-
tors from a disk device driver, then navi-
gates the OS-9 disk structure. Adds
Huffman: “The same drivers can be used
with a pc file manager to navigate a pc

dos style file system. So, it is the file man-
ager that does all the heavy lifting to
make the data useful. This really helped
back in the 1980s and 1990s, when
memory was expensive.” Another file
manager, SCF (sequential character file
manager), manages streams of bytes.

Underneath each file manager are
device driver modules, which provide
raw device access. Then comes the device
descriptor modules – these contain the
configuration data used by a device
driver. Explains Huffman: “A driver may
know how to talk to a 16550 serial chip,
but the descriptor defines an instance of
that chip in memory (hardware base
address, IRQ vector and baud rate). This
lets one device driver run dozens of
instances, each with their own device
descriptor describing where that instance
is in memory.”

The application modules talk to the
kernel and share data modules, which are
user defined. These can be used in rom
to store data (for a file less system), or can
be dynamically created and shared
(shared memory). 

The evolution of OS-9
Over the years, multiuser applications of
OS-9 dwindled, whilst continuing appli-
cations tended to use it as a development
platform, rather than a host. The OS itself
changed too. Explaining the three main
stages of OS-9’s evolution, Yeates said:
“The first evolution of OS-9 was that it
was ported to the 68000 family, bringing

it to a higher performance processor and
16 and 32bit capabilities.” This afforded
developers the opportunity to add more
functionality (this period saw it used in a
variety of industrial and commercial
applications, including Philips’ CD-I). 

Yeates sees the second major evolution
as being in the early 1990s, when a C based
version was created: “That was the largest
change for OS-9 because that allowed it to
be run on any processor for which we had
a C compiler.” Currently a wide range of
processors is supported, including 68xxx,
PPC, X86, Intel SARM/IXP, MIPS,
SPARC, and Hitachi SH. 

The final generational change was the
introduction of threads. He explains:
“OS-9 has always been process based, so
when processors encounter a problem,
the process can terminate it without
endangering the rest of the OS. Most
competing OS’ were monolithic, thread
based – so a catastrophic problem in one
area could bring the whole system down.”
Microware added multiple threads of exe-
cution within a single process. The bene-
fit, explains Yeates, is that when writing
an application, it is isolated from the
main OS so any errors introduced by the
designer don’t impact the system.
Microware used the Posix standard to cre-
ate threads, so any existing Posix applica-
tion can be ported to OS-9.

Explaining OS-9’s relevance today,
Mike Lottridge, Radisys’ software prod-
uct line manager, says: “OS-9 shines in
applications where high performance,
high reliability and scaleability are
needed. Areas it is being used in today
include industrial automation, car navi-
gation, test equipment, imaging and traf-
fic control systems.”

Alluding to competitor OS’ such as
embedded Linux, Lottridge makes the case
for going against the open source tide:
“RadiSys has a fairly substantial hardware
business, of course, so it can supply hard-
ware, the OS, compiler, development envi-
ronment – all the tools from one vendor,
for at one time, as many as 12 processors.
Customers also value the way we treat the
source code – we work hard to keep things
backwards compatible as customers typi-
cally have very long life systems.”  

New E lec t ron ics www.newelec t ron ics . co .uk 10 October  200638

“OS-9 shines in applications where 
high performance, high reliability 
and scaleability are needed.”
Mike Lottridge, Radisys

I N T R A  D E S I G NO P E R A T I N G  S Y S T E M S

Figure 1: OS-9 module organisation

subroutine libraries

init

clock
CSL library

IOMan

file managers

device drivers

device descriptions

trap handlers

OS-9 kernel

user applications
and utilities


